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LETTER TO THE EDITOR 

On q-squeezed states 
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Department of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel 

Received 7 September 1990 

Abstract. We present the results of an analysis of the squeezing of components of the 
(conventional) electromagnetic field in quantum group analogues of the Heisenberg-Weyl 
( H W )  coherent state and S U ( 1 , l )  squeezed state. We find that squeezing occurs for all 
finite-q values not equal to unity in the H W  q-coherent state, in contrast to the usual case; 
and also in the SU,( 1, 1) case, although here less than in the usual ( 9  = 1) SU( 1 , l )  squeezed 
state. 

Recent interest in the so-called quantum groups has led to several papers which describe 
explicitly q-analogues of boson operators [ 1-31. Using these operators it is possible 
to construct q-analogues of coherent states and it is natural to investigate the squeezing 
properties of such states; i.e. to what extent these states reduce uncertainty expectations 
of components of the electromagnetic field below their vacuum values. The answer is 
well known in the conventional (Glauber) coherent case [4]; there is no squeezing. 
One has to introduce squeezed states-essentially coherent states of the SU( 1 ,  1)  
group-in order to obtain this indeterminacy reduction effect. In this letter we present 
the rather surprising result that for q-coherent states squeezing occurs for all q values 
(other than the 'classical' limit q = 1). We further present the analogous result for the 
SU,(l ,  1 )  quantum group, en route showing that a naive analogue of the q-coherent 
state definition fails in this case. 

We first of all define q-boson operators U, u t  as in [l-31, to which we refer the 
reader for further motivation of the definition. We start with conventional bosons b, 
bt  satisfying [b, b'] = I, b i b  = N and write [3] 

where 
q x  - q - x  

[ X I  = [ X I ,  = - q - q-' . 

The operators U, ut satisfy, on the usual Fock space, 

UlO) = 0 In) = ([n]!)-"2(a')"l~) (3)  
where [n]! = [n][n - 11 . . . [ l ]  by a useful abuse of notation. It is convenient to define 
[O]! = 1 and also [n]!!  in the obvious way. The conventional Weyl-Heisenberg coherent 
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state exp(cYat)lO) is not available for our q-operators here since it fails to be normaliz- 
able, and thus also in the Hilbert space, for all q Z 1 (non-zero a ) .  Instead, use of the 
alternatively available conventional definition ala)  = ala) yields [2,3] 

la) = X-’ exp,(aa+)lO) (4) 

X’=exp,(Jal*) ( 5 )  

exp,(x)= 1 -, ( 6 )  

with 

where 

xn  
n = ~  [nl! 

It is with respect to this state la) that we calculate the dispersions of the electromag- 
netic field, assumed to be expressed in terms of the conventional operators b, b’ in 
the standard way 

(7)  X = ( b  + b + ) / f i  

(Ax)*=(x’)-(x)’ 

(Ax)’ = 4 + (b’b) - ( b  ’)( b)  + Re{(( bt)*) - ( b t )2 }  

p = ( b  - bt)/(if i) .  

Thus, 

( A d ’  = (P’) - (p)’ 
so that 

( 8 )  
and 

(Ap)* = $+ ( btb) - ( bt)( b )  - Re{(( b’)’) - ( bt)2}. (9) 
Note that the expectations in (8) and (9) are all with respect to the q-coherent 

state (4). The results for various values of the parameters (Y and q are presented in 
figure 1. As expected, the ‘classical’ limit q = 1 yields no squeezing (that is, the value 
of (Ax)’ is not reduced below its vacuum value of 4). The asymptotic limit q + CO for 

0 0.5 1.0 
119 

Figure 1. Squeezing in the H W  q-coherent state ( q  = 1 corresponds to the conventional 
coherent state). 
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(Ax)’ is i + a 2 ( a 2 -  1)/(a2+ 1)’. The analysis is symmetric under the interchange 
q c* l/q. Note that for three of the values of a displayed in figure 1 there is a finite 
value of q giving optimal squeezing; in fzct, the asymptotics would imply that there 
is an optimal value for each a > 1/d. 

Conventional squeezed states are obtained as the group coherent states of SU( 1,  l ) ,  
whose Lie algebra has relations 

[KO, K*I=*K* [ K , ,  K-]  = -2Ko. (10) 
They have typically the form exp(ia ( a  t)2)10>. The corresponding algebra of the quantum 
group SUq(l,  1) may be written 

[ K O ,  K*]=*K+ [ K + ,  K-I = -[2Kolq2 ( 1 1 )  
with realization 

KO = ;( N ++) K + = ~ ( u ’ ) ~  K - = k U 2  (k = ( q  + q-’)-’) 

in terms of the q-bosons a, at [3]. 
In this case the realization in terms of the ordinary exponential function fails to 

give a normalizable state, as was the case for the Heisenberg-Weyl coherent states (for 
all q # 1). Further, the modified exponential form exp,(ia(a’)’) also fails to give a 
normalizable state for q # 1. However, noting that the conventional squeezed state 
la)= exp(;a(a+)’))O) satisfies 

( a  - aa+)la) = 0 (12) 
we may use (12) as our definition of a q-squeezed state corresponding to SUq(l ,  l ) ,  
to obtain 

with normalization 

O3 [2n-1]!! 
[2n]!! * 

x’=c ( a l ’ n  

The results of numerical computations of the dispersions (8) and (9), now taken 
with respect to the state (13),  for various values of the squeezing parameter a and 
quantum parameter q, are presented in figure 2. Again we note that in the conventional 

a=0.2 I 

aso.8 I 
Figure 2. Squeezing in the SU,(l, 1 )  squeezed state ( q  = 1 corresponds to the conventional 
squeezed state). 
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limit q = 1 we obtain the standard S U ( 1 , l )  squeezing values (see for example [ 5 ] ) .  
Unlike the q-coherent case, here the squeezing obtained is always less than that obtained 
in the conventional case, represented by the minima of the curves on the q = 1 ordinate. 
In the asymptotic limit q + oc we obtain the vacuum values (Ax)* = ( A P ) ~  = f. Generaliz- 
ations of these results to the multiphoton q-states will be presented subsequently. 

We should like to thank the Open University for a Research Grant enabling this 
collaboration to take place, and AIS wishes to thank the Technion for its hospitality. 
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